1 - Acide-base et pH

On fait barboter du gaz ammoniac (NH₃) dans 500 cm³ d'eau. On obtient une solution dont le pH est 10.9.

- Calculer les concentrations en ions H₃O⁺ et OH⁻ de la solution obtenue.
- 2 Ecrire l'équation de la réaction de l'ammoniac sur l'eau.
- 3 Exprimer la relation traduisant l'électroneutralité de la solution. En déduire la concentration en ions ammonium : $[NH_4^+]$.
- 4 Donner l'expression de la constante d'acidité *Ka* du couple ion ammonium/ammoniac. En déduire la concentration en ammoniac dissous [NH₃].
- 5 Ecrire l'équation traduisant la conservation de l'ammoniac (ou de l'élément azote N). On désignera par c la concentration initiale en ammoniac. Calculer c, puis le nombre de moles d'ammoniac gazeux nécessaire pour préparer cette solution. Calculer le volume V d'ammoniac gazeux correspondant (mesuré dans les conditions normales de température et de pression).
- 6 A titre de vérification on dose 20 cm^3 de cette solution par une solution d'acide chlorhydrique (acide fort) à 0.04 mol.dm^{-3} . Il faut en verser 20.3 cm^3 pour obtenir l'équivalence. En déduire c, concentration initiale en ammoniac de la solution basique. Vérifier que le résultat est en accord avec celui de la question 5.

Données : $pKa(NH_4^+/NH_3) = 9,2$

Volume molaire (conditions normales) $V_m = 22 \, 400 \, \text{cm}^3$,

 $Ke = [H_3O^+][OH^-] = 10^{-14}$

2 - Dureté de l'eau.

Une entreprise utilise de l'eau, pompée dans une rivière, pour une chaîne de fabrication d'un produit chimique.

La composition en corps dissous dans l'eau est la suivante :

Ca (H CO₃)₂ = 324 g.m⁻³

Ca $C1_2 = 10,6 \text{ g.m}^{-3}$

Mg (H CO_3)₂ = 204 g.m⁻³

Ca $SO_4 = 68 \text{ g.m}^{-3}$

- 1 Pour chaque produit, calculer la concentration en $mol.m^{-3}$ et en $mol.dm^{-3}$ (on écrira cette dernière sous la forme $X.10^{-4}$).
- 2 En déduire les concentrations en ions Ca²⁺et Mg²⁺.
- 3 Donner la dureté totale de cette eau en titre hydrotimétrique total (*T.H.T.*).
- 1° *T.H.T.* équivaut à 10^{-4} mol.dm⁻³ d'ions Ca²⁺, ou Mg²⁺.

Données: masses molaires en g.mol⁻¹

 $Ca(HCO_3)_2 = 162$

 $CaCl_2 = 111$

 $Mg(HCO_3)_2 = 146$

 $CaSO_4 = 136$